Parameter estimation in stochastic chemical kinetic models using derivative free optimization and bootstrapping
نویسندگان
چکیده
منابع مشابه
Derivative-Free Optimization for Parameter Estimation in Computational Nuclear Physics
We consider optimization problems that arise when estimating a set of unknown parameters from experimental data, particularly in the context of nuclear density functional theory. We examine the cost of not having derivatives of these functionals with respect to the parameters. We show that the POUNDERS code for local derivative-free optimization obtains consistent solutions on a variety of comp...
متن کاملA comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models
Mathematical models in biochemical engineering field are usually composed by nonlinear kinetic equations, where the number of parameters that must be estimated from a set of experimental measurements is usually very high. In these cases, the estimation of the model parameters comprises numerical iterative methods for minimization of the objective function. Classical methods for minimization of ...
متن کاملStochastic derivative-free optimization using a trust region framework
This paper presents a trust region algorithm to minimize a function f when one has access only to noise-corrupted function values f̄ . The model-based algorithm dynamically adjusts its step length, taking larger steps when the model and function agree and smaller steps when the model is less accurate. The method does not require the user to specify a fixed pattern of points used to build local m...
متن کاملParameter estimation in stochastic rainfall-runoff models
A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all the parameters, including the noise terms. The parameter estimation method is a maximum likelihood...
متن کاملParameter estimation in stochastic grey-box models
An e2cient and 3exible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Itô stochastic di6erential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended Kalman 9lter and features maximum likelihood as well as maximum a posteriori estimation on multiple indepen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Chemical Engineering
سال: 2014
ISSN: 0098-1354
DOI: 10.1016/j.compchemeng.2014.01.006